

A brief review

Academic Career:

July 2007 to Present - The Scripps Research Institute Full Professor since Aug 2010

Mar 2004 to Jun 2007 - Brandeis University Assistant Professor

Oct 2003 to Feb 2004 - University of Cambridge Royal Society Research Fellow

Oct 1990 to Sep 1994 - Guangzhou Institute of Chemistry TA and RA

Jin-quan Yu

----Zhi Ren 2012-8-29

Jin-quan Yu

Education:

Harvard University - Cambridge, MA, USA

Postdoctoral Fellow
 Supervisor: E. J. Corey (3 papers)
 February 2001 to May 2002

University of Cambridge - Cambridge, UK

• Junior Research Fellow (JRF) of St. John's College October 1999 to October 2003

University of Cambridge - Cambridge, UK

 Ph.D. in Chemistry Supervisor: Jonathan B. Spencer (21 papers) October 1994 to September 1999

Guangzhou Institute of Chemistry - Guangzhou, China

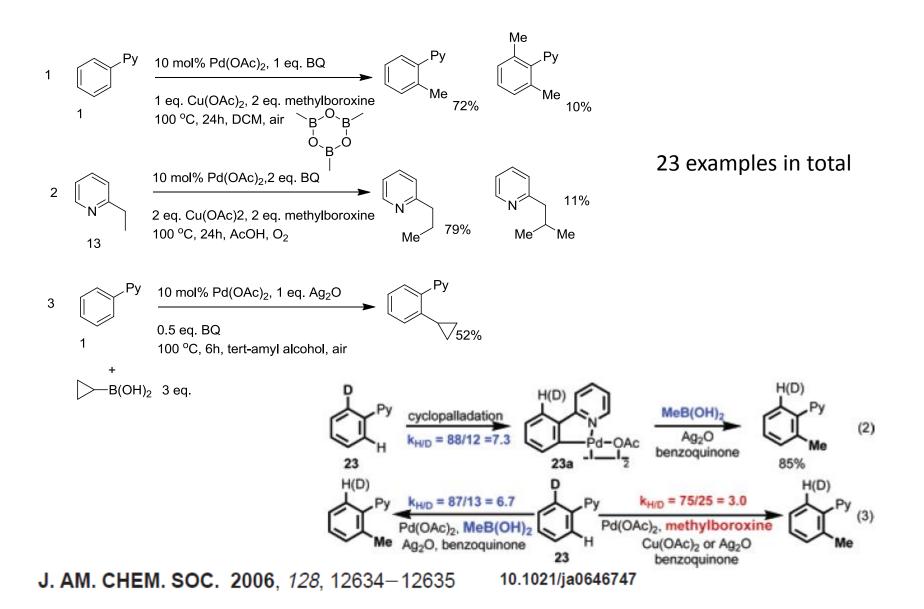
 M.Sc. in Chemistry Supervisor: S.-D. Xiao (2 papers) September 1988 to July 1990

Shanghai Institute of Organic Chemistry - Shanghai, China

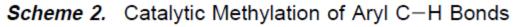
• Coursework for M.Sc. degree September 1987 to July 1988

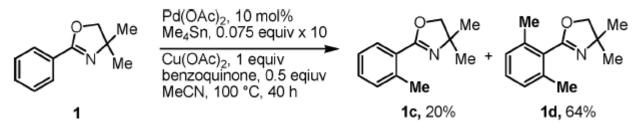
East China Normal University - Shanghai, China

 B.Sc. in Chemistry Top 5% on national examination for admission to SIOC September 1982 to July 1987

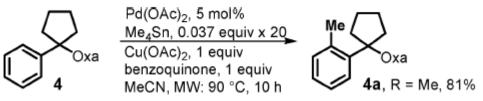

Outline

- 1. C-C bond formation
- 2. C-N bond formation
- 3. C-O bond formation
- 4. C-Halide bond formation
- 5. Other

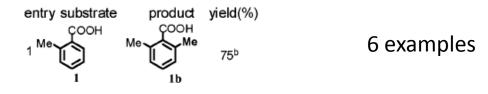

1.C-C bond formation


- 1-1. Pyridine as Directing Group=DG (2006-10, 1 pub.)
- 1-2. Oxazoline as DG (2006, 1 pub.)
- 1-3. Carboxylic acid as DG (2007-08, 2010-11, 3+2 pub.)
- 1-4. CONHX as DG (2008-11, 7 pub.)
- 1-5. No DG (2009-10, 3 pub.)
- 1-6. NHCOX as DG (2010, 1 pub.)
- 1-7. Remote DG (2012, 1 pub.)

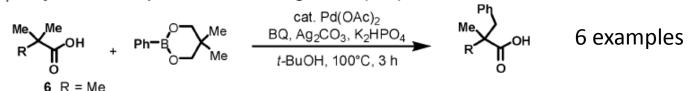
1-1 Pyridine as DG


1-2 Oxazoline as DG

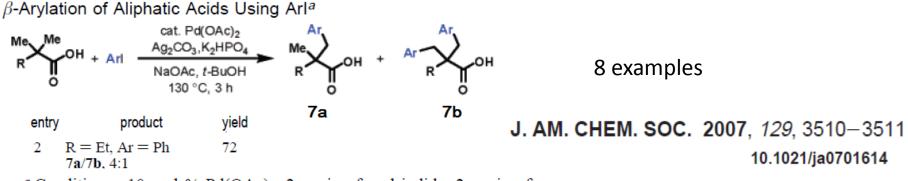
Every 3h per batch 19 examples


Scheme 5. Methylation Assisted by Microwave Irradiation

Every 0.5h per batch

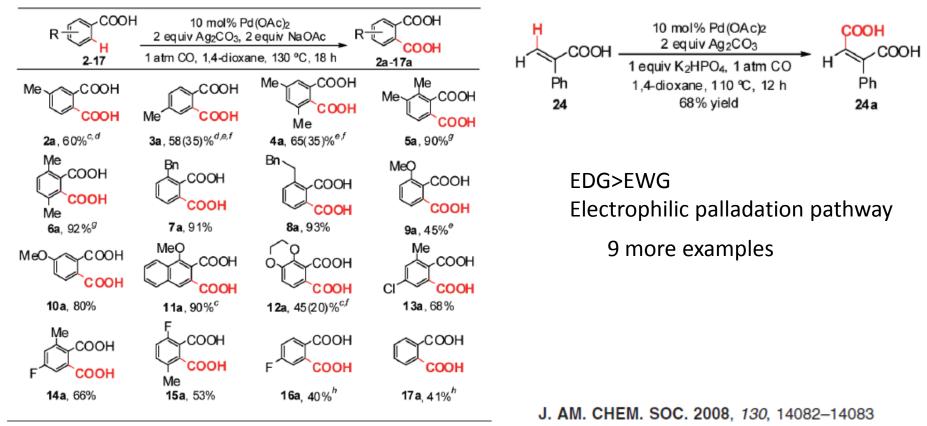

J. AM. CHEM. SOC. 2006, 128, 78-79 10.1021/ja0570943

Ortho Methylation and Arylation of Benzoic Acids^a

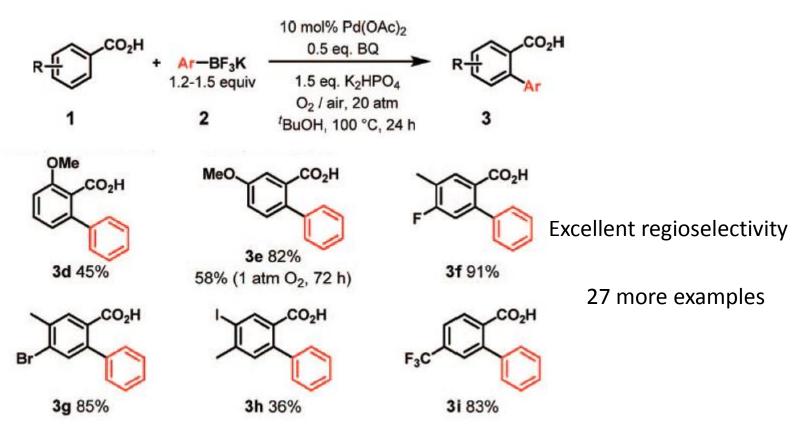


^{*a*} Conditions: 10 mol % Pd(OAc)₂, 0.5 equiv of benzoquinone, 1 equiv of Ag₂CO₃, 1.5 equiv of K₂HPO₄, 2 equiv of MeB(OH)₂ or 1 equiv of **2**, *tert*-BuOH, 120 °C, 3 h.

 β -Arylation of Aliphatic Acids Using Ph-B(OR)₂^a

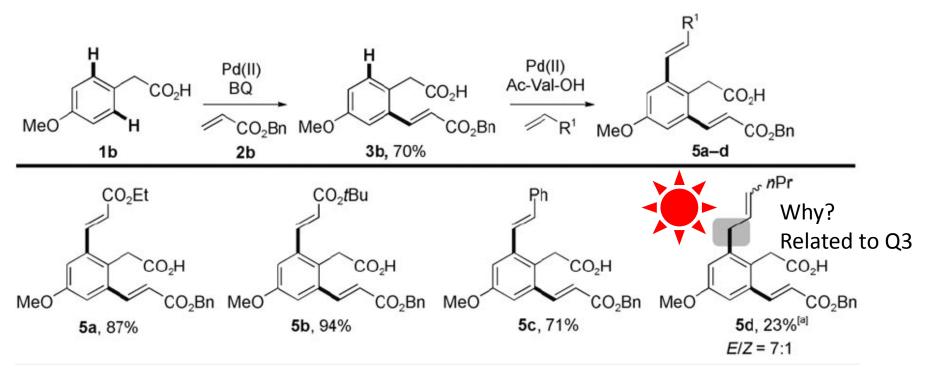


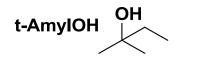
^{*a*} Conditions: 10 mol % Pd(OAc)₂, 1 equiv of **2**, 0.5 equiv of benzoquinone, 1 equiv of Ag₂CO₃ and 1.5 equiv of K₂HPO₄. ^{*b*} Yields of their methyl esters. Less than 2% diarylated products were observed in 6-10.



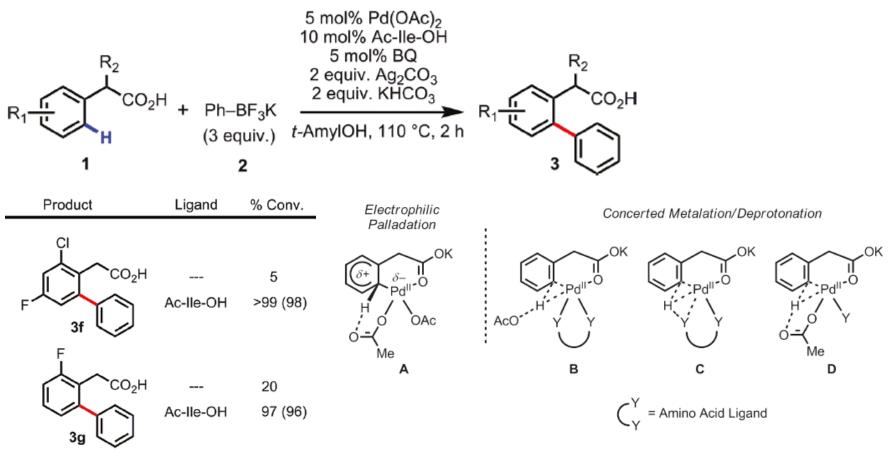
^{*a*} Conditions: 10 mol % Pd(OAc)₂, 2 equiv of aryl iodide, 2 equiv of Ag₂CO₃, 1 equiv of K₂HPO₄, and 2 equiv of NaOAc.

Table 2. Carboxylation of Benzoic Acid and Its Derivatives^{a,b}

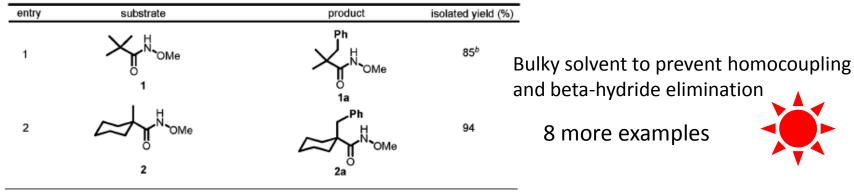

^{*a*} Run using 10 mol % Pd(OAc)₂, 2 equiv of Ag₂CO₃, 2 equiv of NaOAc, 1 atm of CO, dioxane, 130 °C, 18 h. ^{*b*} Isolated yields. ^{*c*} Run in 30 h. ^{*d*} **2a** and **3a** are the same products obtained from ortho and para toluic acids **2** and **3**, respectively. ^{*e*} Run at 150 °C, 30 h. ^{*f*} NaOAc was replaced with K₂HPO₄. NMR yields in presence of NaOAc are given in parenthesis. ^{*g*} Run with 1 equiv of K₂HPO₄ added. ^{*h*} Run at 150 °C, 48 h.


the presence of Ag⁺ oxidant results in a complete loss of the reactivity.

J. AM. CHEM. SOC. 2008, 130, 17676-17677


10.1021/ja806681z

Scheme 6. Sequential olefination. Reaction conditions (1st step): 2b (2 equiv), Pd(OAc)₂ (5 mol%), BQ (5 mol%), KHCO₃ (2 equiv), tAmylOH, 90°C, 1 atm O₂, 48 h. Reaction conditions (2nd step): olefin (2 equiv), Pd(OAc)₂ (5 mol%), Ac-Val-OH (10 mol%), KHCO₃ (2 equiv), tAmylOH, 90°C, 1 atm O₂, 6 h. Reported yields are for the isolated products. [a] Used 1-hexene (2 f; 1 equiv).


Angew. Chem. Int. Ed. 2010, 49, 6169–6173 DOI: 10.1002/anie.201002077

21 more substrates

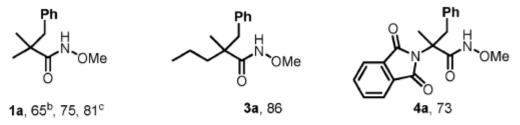
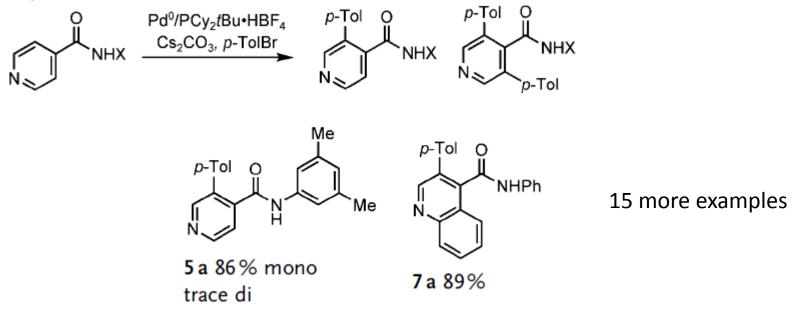

dx.doi.org/10.1021/ja203978r J. Am. Chem. Soc. 2011, 133, 18183-18193

Table 1. β-Arylation of O-Methyl Hydroxamic Acids^a

^a Reaction conditions: *O*-methyl hydroxamic acid (0.5 mmol), arylboronic acid (0.8 mmol), Pd(OAc)₂ (0.05 mmol, 10 mol %), Ag₂O (1 mmol), benzoquinone (BQ, 0.25 mmol), K₂CO₃ (1 mmol), t-BuOH (3 mL), 70 °C, 18 h. Reactions were carried out in a Teflon cap-sealed tube. ^b t-BuOH:DMF = 4:1 as solvent.

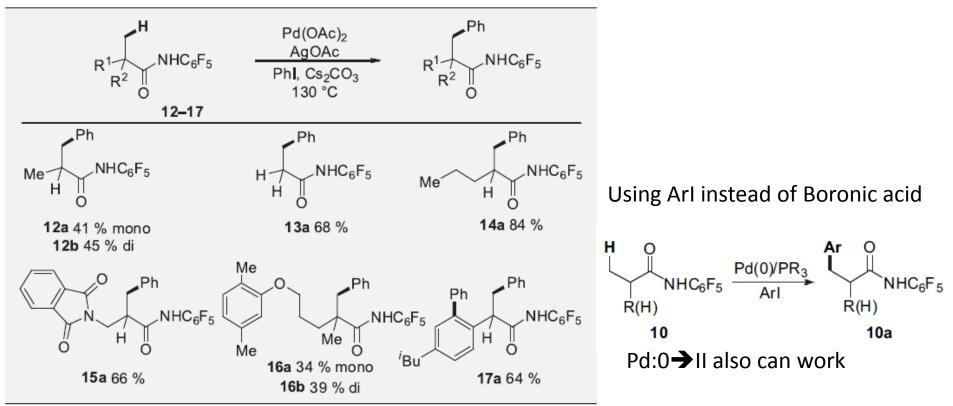
Table 3. C-H Activation/C-C Coupling Using Air as the Oxidant^a


^a Reaction conditions: O-methyl hydroxamic acid (0.5 mmol), boronic J. AM. CHEM. SOC. 2008, 130, 7190–7191 acid (0.8 mmol), Pd(OAc)₂ (0.05 mmol, 10 mol %), K₂CO₃ (1 mmol), benzoquinone (BQ, 0.25 mmol), 20 atm air and 20 atm N₂, 80 °C, 48 h. Solvent for arylation: t-BuOH (3 mL). Solvent for alkylation: 2,2,5,5-tetramethylTHF (3 mL). Reactions were carried out in a high pressure vessel. ^b 20 atm air. ^c 20 atm air and 60 atm N₂.

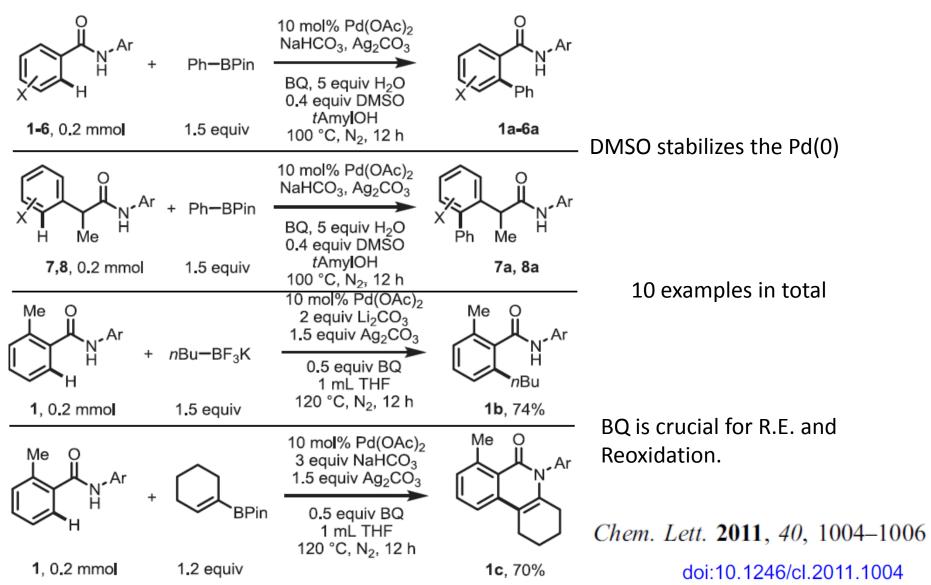
O₂ instead of Ag₂O

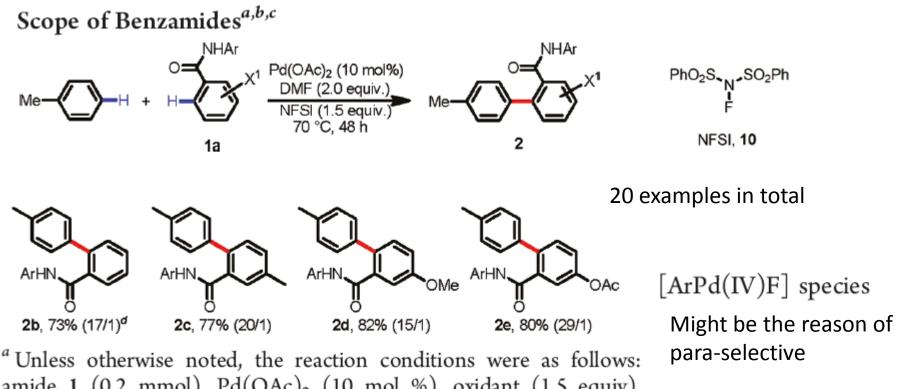
6 more examples

10.1021/ja801355s


Arylation of nicotinic and isonicotinic derivatives.

[a] Conditions: 0.2 mmol of substrate, 10 mol% $Pd(OAc)_2$, 10 mol% $PCy_2tBu \cdot HBF_4$, 3.0 equiv of Cs_2CO_3 , 1.5 equiv of aryl bromide, 100 mg 3 Å M.S., 1 mL toluene, 130°C, N₂, 48 h. [b] Yield of isolated product.


Angew. Chem. Int. Ed. 2010, 49, 1275–1277 DOI: 10.1002/anie.200906104

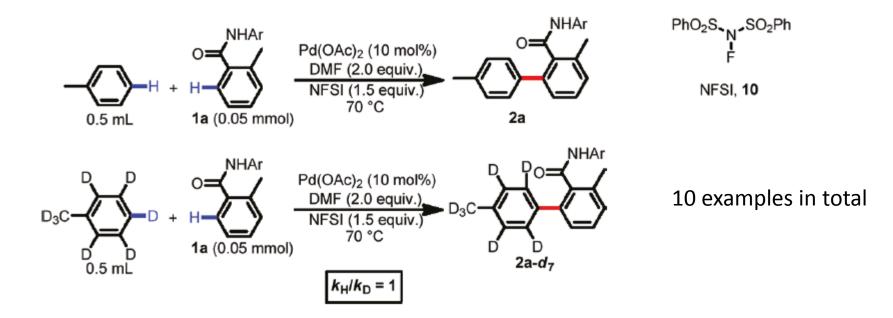
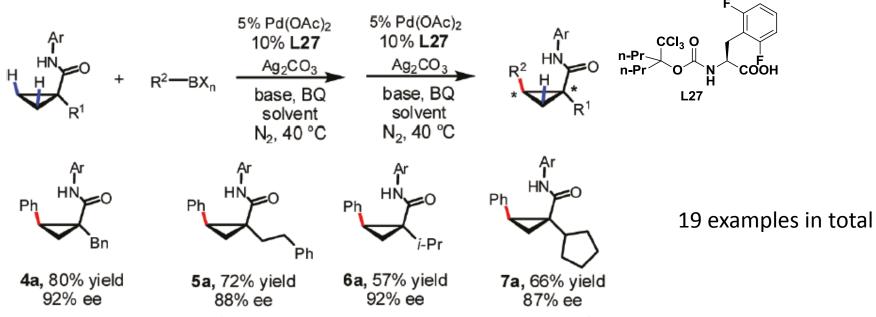

Table 3Arylation of *N*-phenylpivalamides^{a,b}

^a Reaction conditions: 0.2 mmol substrate, 10 mol % Pd(OAc)₂, 4 equiv AgOAc, 1.2 equiv Cs₂CO₃, 0.5 mL iodobenzene, 130 °C, 3 h, air.

M. Wasa, J.-Q. Yu / Tetrahedron 66 (2010) 4811–4815 doi:10.1016/j.tet.2010.03.111

amide 1 (0.2 mmol), $Pd(OAc)_2$ (10 mol %), oxidant (1.5 equiv), DMF (2.0 equiv), toluene (2 mL), 70 °C, 48 h. ^{*b*} Isolated yields are given. ^{*c*}Regioselectivity determined by GC analysis (*para/meta*, no *ortho*-product was observed) is shown in parentheses. ^{*d*} 90 °C, 24 h. ^{*e*} 80 °C, 36 h. ^{*f*} 100 °C, 24 h. ^{*g*} 15 mol % Pd(OAc)_2.

dx.doi.org/10.1021/ja206572w | J. Am. Chem. Soc. 2011, 133, 13864–13867

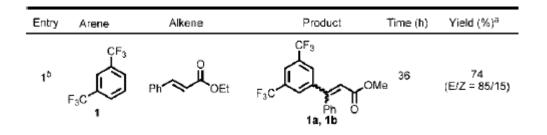
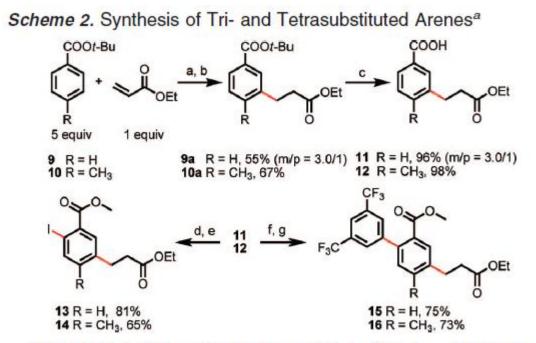

Figure 2. Kinetic isotope effect.

Table 5. Asymmetric Cyclopropane C–H Functionalization^{*a,b*}

^{*a*} Conditions: (first batch) 0.1 mmol of substrate, 5 mol % $Pd(OAc)_{2}$, 10 mol % ligand, 1.0 equiv of Ph—BPin, 0.75 equiv of Ag_2CO_3 , 2.0 equiv of NaHCO₃, 0.25 equiv of BQ, 3 equiv of H₂O, 0.5 mL of *t*-Amyl-OH, 40 °C, N₂, 6 h; (second batch) 5 mol % $Pd(OAc)_2$, 10 mol % ligand, 0.5 equiv of Ph—BPin, 0.75 equiv of Ag_2CO_3 , 1.0 equiv of NaHCO₃, 0.25 equiv of BQ, 1 equiv of H₂O, 0.2 mL of *t*-Amyl-OH, 40 °C, N₂, 6 h.

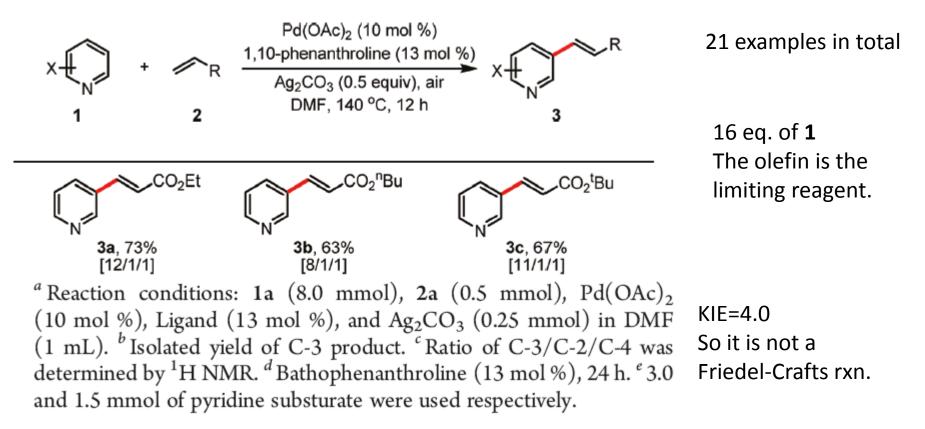
dx.doi.org/10.1021/ja207607s | J. Am. Chem. Soc. 2011, 133, 19598–19601



^{*a*} Unless otherwise noted, the reactions were carried out with 0.6 mmol of alkene, 10 mol% $Pd(OAc)_2$ (0.06 mmol), 20 mol% L3 (0.12 mmol), 1.0 equiv of Ac_2O , 1 atm of O_2 in 2 mL (20–30 equiv) of arene at 90 °C. The isomer ratios were determined by GC. All the standard *para* and *meta* compounds were prepared *via* Heck coupling of the corresponding aryl halides and alkenes.

J. AM. CHEM. SOC. 2009, 131, 5072-5074

10.1021/ja900327e



^{*a*} (a) Pd(OAc)₂ (10 mol%), L3 (20 mol%), Ac₂O (1.5 equiv), EtOAc, 90 °C; (b) H₂, Pd/C, EtOAc; (c) TFA, DCM; (d) PhI(OAc)₂ (1.0 equiv), I₂ (1.0 equiv), Pd(OAc)₂ (10 mol%), Bu₄NI (1.0 equiv), DCE, 80 °C; (e) CH₂N₂; (f) Pd(OAc)₂ (10 mol%), ArI (3.0 equiv), AgOAc (1.5 equiv), AcOH (5.0 equiv), 120 °C; (g) CH₂N₂.

J. AM. CHEM. SOC. 2009, 131, 5072-5074

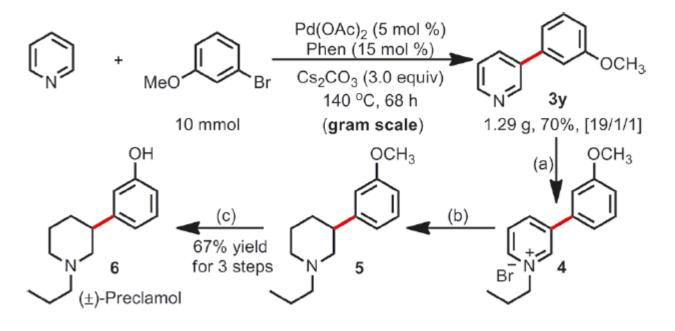

10.1021/ja900327e

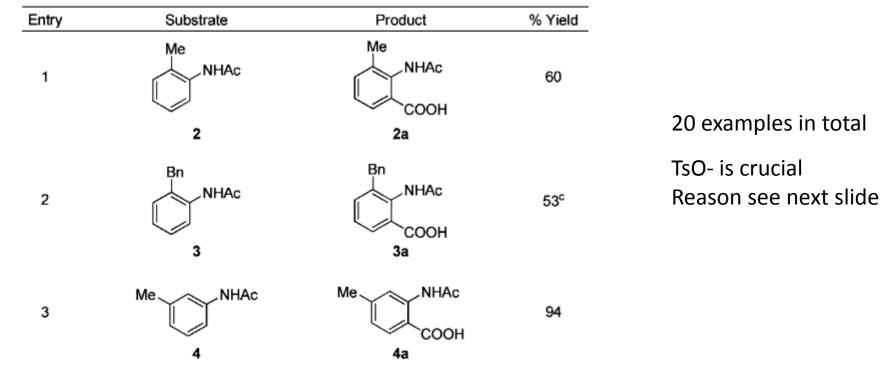
Table 2. Pd-Catalyzed Olefination of Pyridine Derivatives

dx.doi.org/10.1021/ja2021075 J. Am. Chem. Soc. 2011, 133, 6964-6967

Scheme 1. Synthesis of (\pm) -Preclamol^{*a*}

24 examples in total

6 eq. of pyridine The olefin is the limiting reagent.


^{*a*} Reagents and conditions: (a) 1-bromopropane, CH_3CN , 110 °C; (b) PtO₂, MeOH, H₂ (60 psi), room temperature; (c) HBr in HOAc (33%), reflux.

KIE=4.2 C-H activation may via Concert metalation

dx.doi.org/10.1021/ja209510q |J. Am. Chem. Soc. 2011, 133, 19090-19093

1-6. NHCOX as DG

Ortho-Carboxylation of Anilides via C-H Activation^{a,b}

^{*a*} 10 mol % Pd(OAc)₂, 0.5 equiv of *p*-TsOH·H₂O, 1 equiv of benzoquinone, 1 atm of CO, HOAc/dioxane (2:1). ^{*b*} Isolated yields. ^{*c*} Dioxane was used as a solvent.

J. AM. CHEM. SOC. 2010, 132, 686-693

1-6. NHCOX as DG

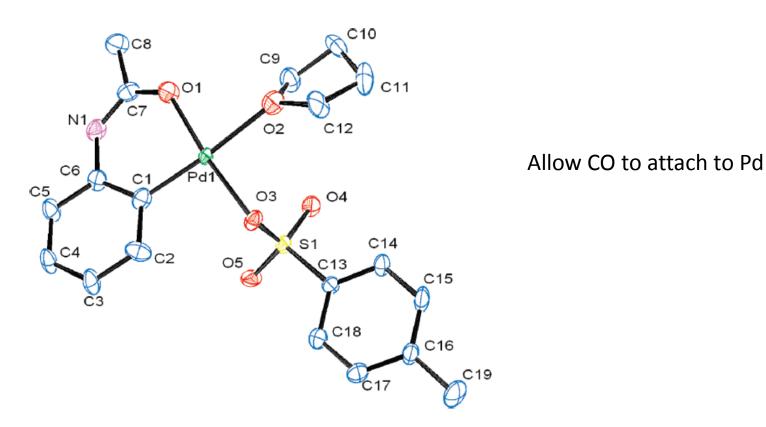
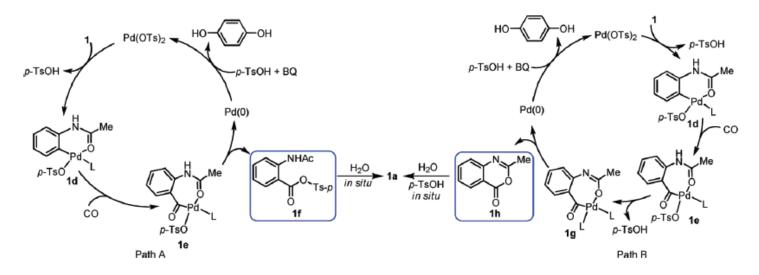
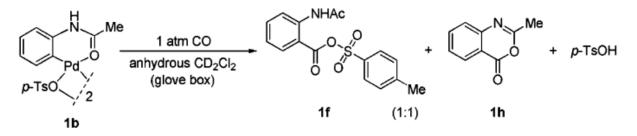
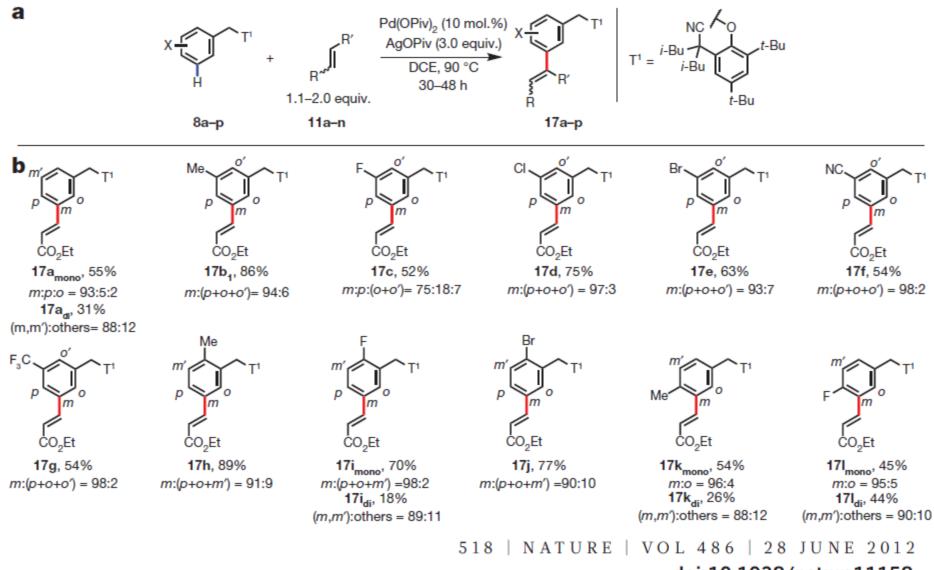



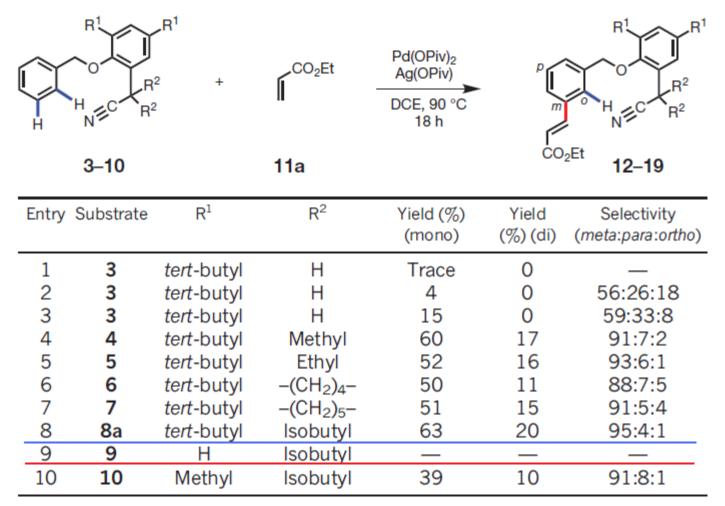
Figure 1. Crystal structure of 1c.


J. AM. CHEM. SOC. 2010, 132, 686-693

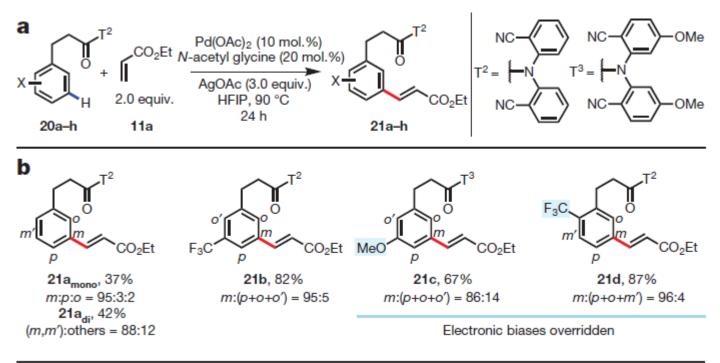
1-6. NHCOX as DG


Scheme 8. Dual-Reaction Pathways of Catalytic Carboxylation in the Presence of H₂O

Scheme 9. Stoichiometric Reaction of Palladacycle 1b with CO under Anhydrous Conditions

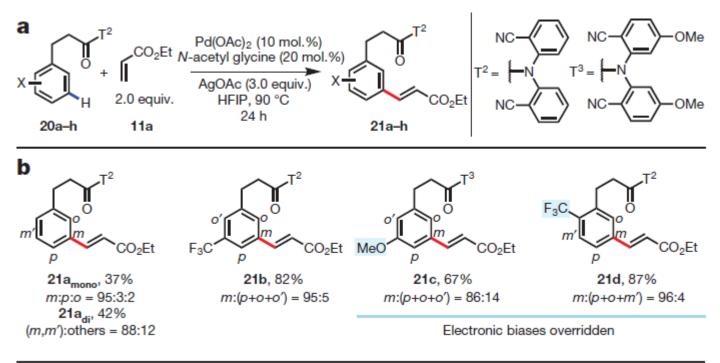


J. AM. CHEM. SOC. 2010, 132, 686-693



doi:10.1038/nature11158

Table 1 | Optimization of template



518 | NATURE | VOL 486 | 28 JUNE 2012

T2 is more easier to remove.Good functional groups tolerence.38 examples in total.

518 | NATURE | VOL 486 | 28 JUNE 2012 doi:10.1038/nature11158

T2 is more easier to remove.Good functional groups tolerence.38 examples in total.

518 | NATURE | VOL 486 | 28 JUNE 2012 doi:10.1038/nature11158

Summary

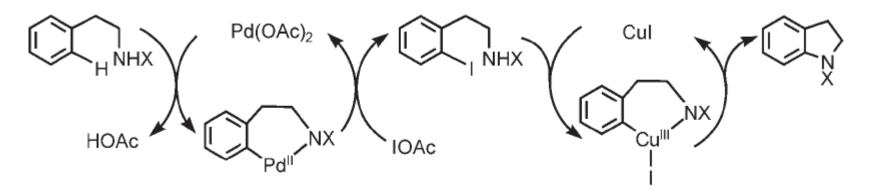
- 1. Good directing group is the most important
- 2. Many types of reactants as coupling partner Boronic acid, Halides, CO, Olefins...
- 3. Two different mechanism are purposed.

2.C-N bond formation

• 2-1. Intramolecular C-N bond formation

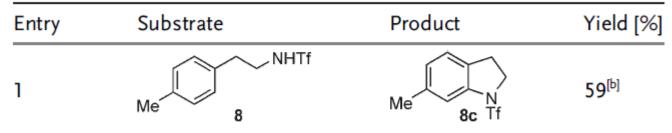
----Cyclization reaction

From 2008-09, 3 publications.


• 2-2. Intermolecular C-N bond formation From 2011, 1 publication.

In contrast, achieving the Pd-catalyzed C–H amination reaction represents a distinct challenge and has been met with a number of difficulties, as can be anticipated from the many tremendous hurdles encountered in the development of the Buchwald–Hartwig amination reaction.²

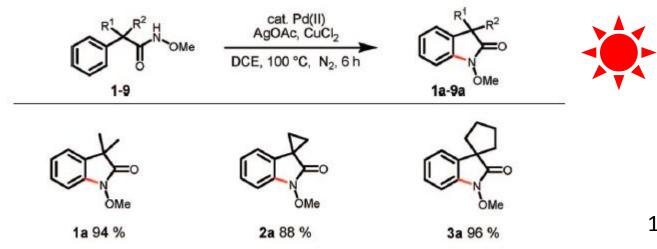
2.C-N bond formation


• Let's tell the story from the beginning...

2-1. Intramolecular C-N

Table 3: One-pot intramolecular amination catalyzed by Pd(OAc)₂ and Cul.^[a]

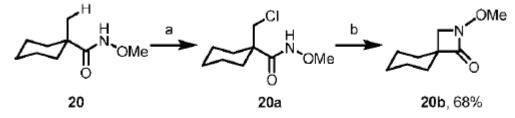
Only 7 examples are synthesized in this way



[a] Reaction conditions: 10 mol % Pd(OAc)₂, 2 equiv C₆H₅I(OAc)₂, 2 equiv I₂, 1 equiv Cs₂CO₃, 1 equiv CuI, DMF, 130 °C, 96 h. [b] 5-Iodoindolines were isolated in 7—10% yield . [c] 0.5 equiv CuI.

Angew. Chem. Int. Ed. 2008, 47, 6452–6455

DOI: 10.1002/anie.200802187


2-1. Intramolecular C-N

18 examples in total.

^a Conditions: 0.5 mmol of substrate, 10 mol% Pd(OAc)₂, 1.5 equiv of CuCl₂, 2.0 equiv of AgOAc, 10 mL of dichloroethane, N₂, 100 °C, 6 h.

Scheme 1. One-Pot Synthesis of β -Lactams^a



^{*a*} Reaction conditions: (1) 0.5 mmol of substrate, 10 mol % Pd(OAc)₂, 1.5 equiv of CuCl₂, 2.0 equiv of AgOAc, DCE, 100 °C, N₂, 10 h. (2) 4 equiv of CsF, 0.18 equiv of benzyltriethyl ammonium chloride, 100 °C, 12 h.

J. AM. CHEM. SOC. ■ VOL. 130, NO. 43, 2008

10.1021/ja807129e

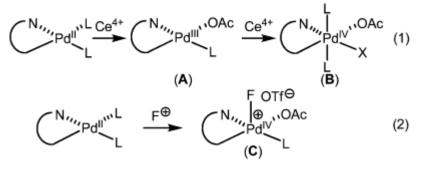
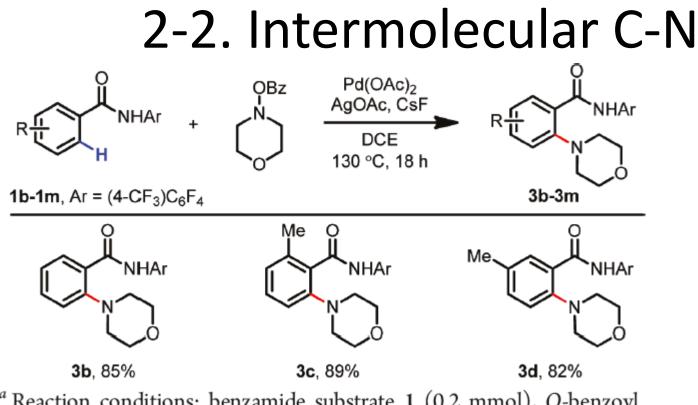

2-1. Intramolecular C-N

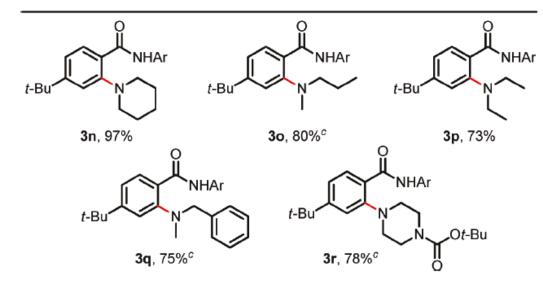
Table 2. Pd-Catalyzed Amination Using F⁺ As an Oxidant

24 examples in this procedure.



 $Ce(SO_4)_2$ was the first oxidant that shows good reactivity. 9 examples. But the acetoxylation product also gave 35% yield.

J. AM. CHEM. SOC. 2009, 131, 10806-10807


10.1021/ja904709b

^{*a*} Reaction conditions: benzamide substrate 1 (0.2 mmol), *O*-benzoyl hydroxylmorpholine (0.4 mmol), Pd(OAc)₂ (10 mol %), AgOAc (0.2 mmol), CsF (0.4 mmol), DCE (1 mL), 130 °C, 18 h. ^{*b*} Isolated yield.

12 examples using this amine partner.Does other amines work?

2-2. Intermolecular C-N

^{*a*} Reaction conditions: 1a (0.2 mmol), *O*-benzoyl hydroxylamine (0.4 mmol), Pd(OAc)₂ (10 mol%), AgOAc (0.2 mmol), CsF (0.4 mmol), DCE (1 mL), 130 °C, 18 h. ^{*b*} Isolated yield. ^{*c*} α, α, α -Trifluorotoluene was used as a solvent.

12 examples using this amine partner.Does other amines work?

dx.doi.org/10.1021/ja202563w J. Am. Chem. Soc. 2011, 133, 7652-7655

2-2. Intermolecular C-N

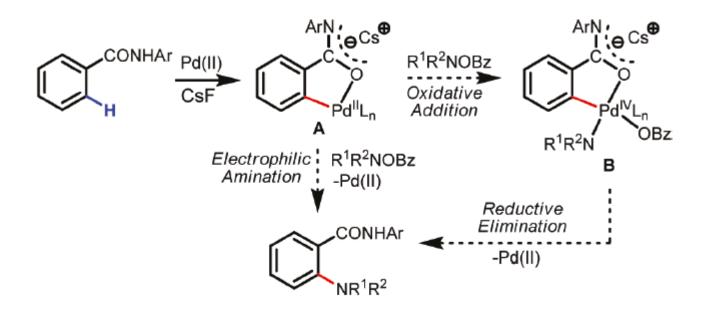


Figure 2. Possible reaction pathways with Pd(II) catalyst.

I think F also play an important role here.

dx.doi.org/10.1021/ja202563w J. Am. Chem. Soc. 2011, 133, 7652-7655

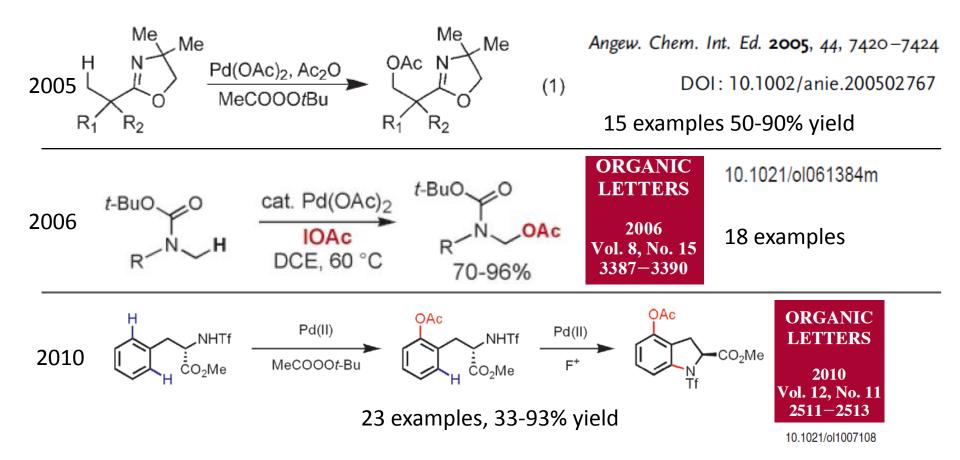
Future

- 1. sp³ C-N bond
- 2. practical approach --- no Ag, or expensive F

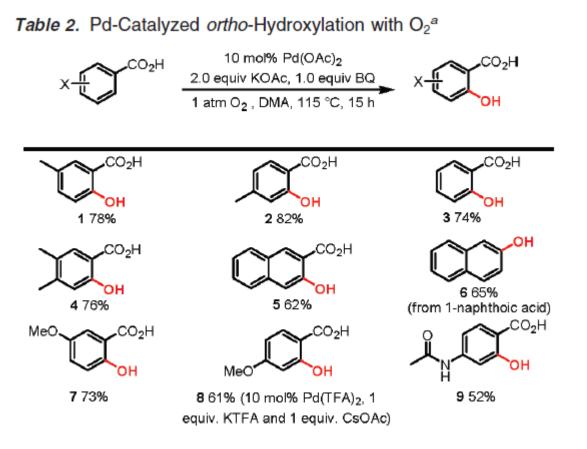
3.C-O bond formation

• 3-1. C-OAc as Product

from 2005-10, 3 publications.


• 3-2. C-OH as Product

2009, 1 publication.


• 3-3. Cyclization reaction

2010, 1 publication.

3-1. C-OAc as Product

3-2. C-OH as Product



J. AM. CHEM. SOC. 2009, 131, 14654-14655

10.1021/ja907198n

Table 2. Pd(II)-Catalyzed C-H Activation/C-O Cyclization^{a,b}

^{*a*} Unless otherwise noted, the reaction conditions were as follows: **1** (0.2 mmol), $Pd(OAc)_2$ (0.01 mmol, 5 mol %), $PhI(OAc)_2$ (0.3 mmol, 1.5 equiv), Li_2CO_3 (0.3 mmol, 1.5 equiv), C_6F_6 (2 mL), 100 °C, 36 h. ^{*b*} Isolated yields are reported. ^{*c*} Na₂HPO₄ was used instead of Li₂CO₃. ^{*d*} Using 10 mol % Pd(OAc)₂.

23 examples in total. 42-91% yield.

J. AM. CHEM. SOC. 2010, 132, 12203-12205

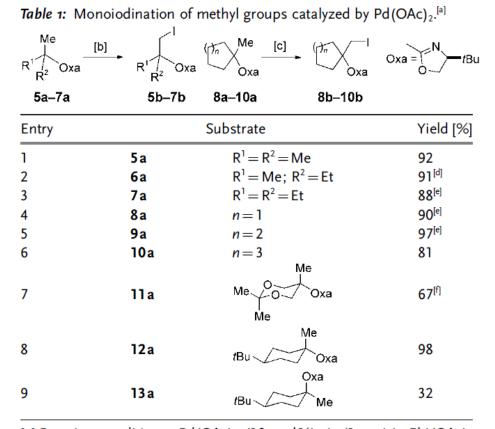
10.1021/ja105366u

4. C-Halide bond formation

• 4-1. C-I Bond formation

From 2005-10, 4+3 (application) Publications.

• 4-2. C-Cl Bond formation

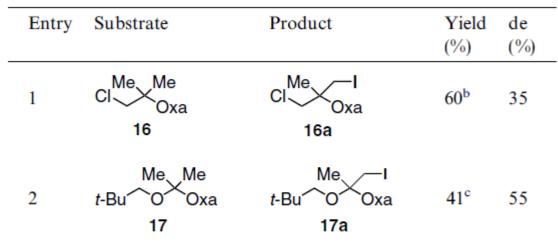

2006 1 Publication.

• 4-3. C-F Bond formation

From 2009-2011, 2 Publications.

• 4-4. C-CF₃ Bond formation

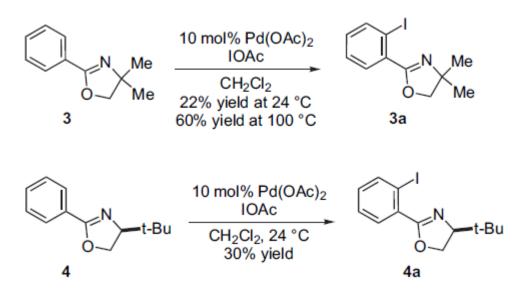
From 2010-12, 2 Publications.



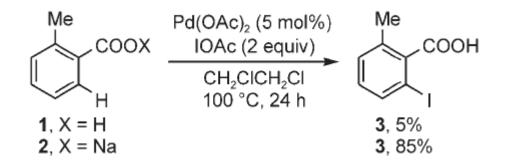
[a] Reaction conditions: $Pd(OAc)_2$ (10 mol%), I_2 (1 equiv), $PhI(OAc)_2$ (1 equiv), CH_2CI_2 , 24°C, 48–72 h. [b] Entries 1–3. [c] Entries 4–6. [d] 63:37 d.r. (NMR spectroscopy). [e] PdI_2 precipitated at 36–48 h, $PhI(OAc)_2$ (1 equiv) was added, and stirring continued for another 48 h. [f] $PhI(OAc)_2$ (2 equiv), 50°C, 48 h.

4 more examples with d.r. selectivity

Angew. Chem. 2005, 117, 2150-2153 DOI: 10.1002/ange.200462884


Table 1. Diastereoselective iodination^a

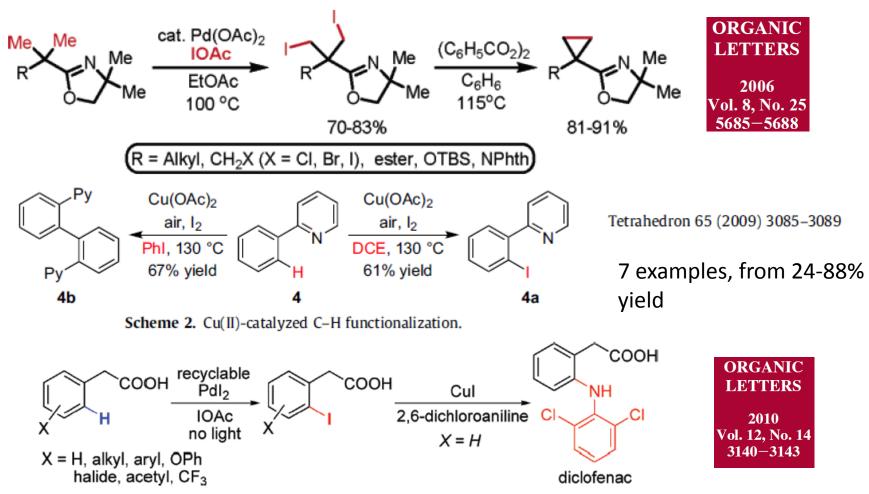
^a Oxa = (S)-4-*tert*-Butyloxazoline-2-. Reaction conditions: Pd(OAc)₂ (10 mol %) I₂ (1 equiv), PhI(OAc)₂ (1 equiv), CH₂Cl₂.
^b 65 °C, PhI(OAc)₂ (1 equiv) was added after 12 h, and stirring continued for another 24 h.


18 examples in total. 41-83% yield.

Tetrahedron: Asymmetry 16 (2005) 3502–3505 doi:10.1016/j.tetasy.2005.08.049

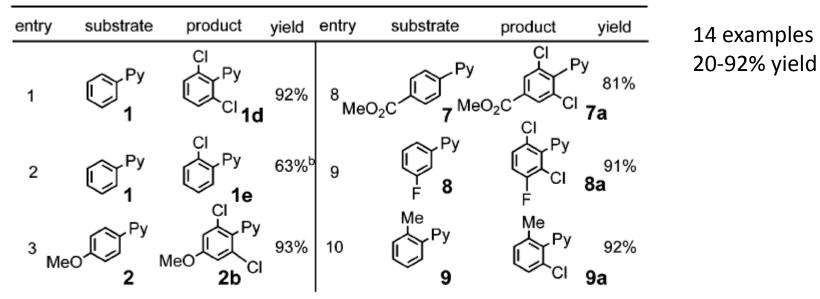
17 examples in total. 29-95% yield.

Tetrahedron: Asymmetry 16 (2005) 3502–3505 doi:10.1016/j.tetasy.2005.08.049



DMF can promote this reaction. Use the following condition for 14 examples, with 65-85% yield.

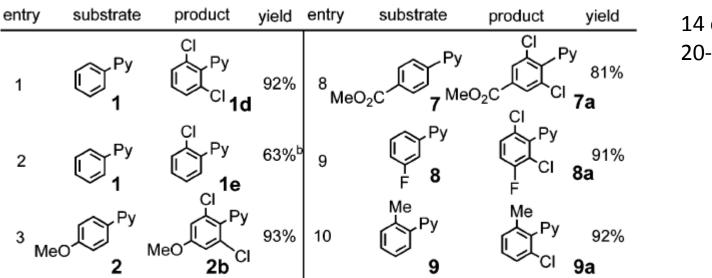
```
[a] Reaction conditions: Pd(OAc)<sub>2</sub> (5 mol%), IOAc (3 equiv (entries 3–6, 9, and 12) or 2 equiv (entries 8, 10, 11, 13, 14)), DMF, 100°C, 36 h.
```


Angew. Chem. Int. Ed. 2008, 47, 5215-5219 DOI: 10.1002/anie.200705613

Application

4-2. C-Cl Bond formation

Table 1. Cu(II)-Catalyzed Chlorination of Aryl C-H Bonds^a

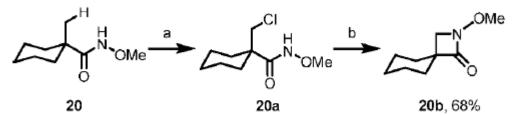


^{*a*} With 20 mol % of CuCl₂, Cl₂CHCHCl₂, O₂ (1 atm), 130 °C, 24 h. ^{*b*} At 100 °C; 23% dichlorinated product was also obtained.

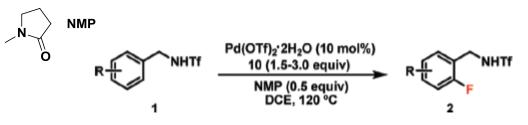
> J. AM. CHEM. SOC. 2006, 128, 6790-6791 10.1021/ja061715q

4-2. C-Cl Bond formation

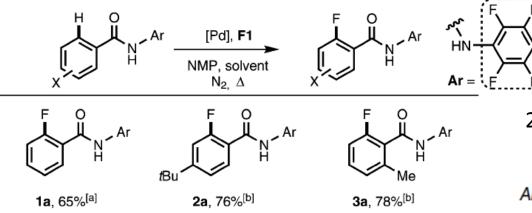
Table 1. Cu(II)-Catalyzed Chlorination of Aryl C-H Bonds^a



14 examples 20-92% yield


^{*a*} With 20 mol % of CuCl₂, Cl₂CHCHCl₂, O₂ (1 atm), 130 °C, 24 h. ^{*b*} At 100 °C; 23% dichlorinated product was also obtained.

Scheme 1. One-Pot Synthesis of β -Lactams^a


J. AM. CHEM. SOC. VOL. 130, NO. 43, 2008

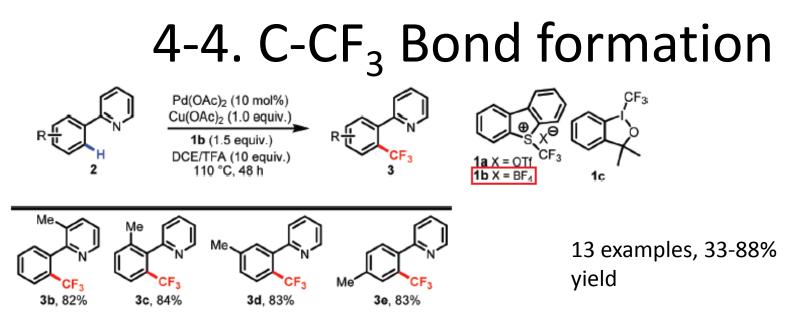
^{*a*} Reaction conditions: (1) 0.5 mmol of substrate, 10 mol % Pd(OAc)₂, 1.5 equiv of CuCl₂, 2.0 equiv of AgOAc, DCE, 100 °C, N₂, 10 h. (2) 4 equiv of CsF, 0.18 equiv of benzyltriethyl ammonium chloride, 100 °C, 12 h.

Finally, the detailed role of NMP remains to be elucidated. Investigations have led Vigalok to propose that oxidation of L_2PdArI by the F⁺ source via an S_N2-type mechanism gives a cationic pentacoordinated $L_2Pd(IV)ArIF$ complex.⁸

Scheme 4. Monofluorination of benzamides. Unless otherwise specified the reaction conditions used were: 0.1 mmol of substrate, 10 mol % of $[Pd(OTf)_2(MeCN)_4]$, 20 mol % of NMP, 1.5 equiv of *N*-fluoro-2,4,6-trimethylpyridinium triflate (F1), 2 mL of MeCN, 120 °C, N₂, 24 h. The yield is of the isolated products. [a] The reaction was carried out for 8–12 h. [b] The reaction was carried out for 2–3 h.

J. AM. CHEM. SOC. VOL. 131, NO. 22, 2009

10.1021/ja901352k

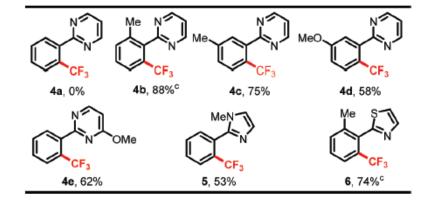


17 examples, 41-88% yield

CF₂

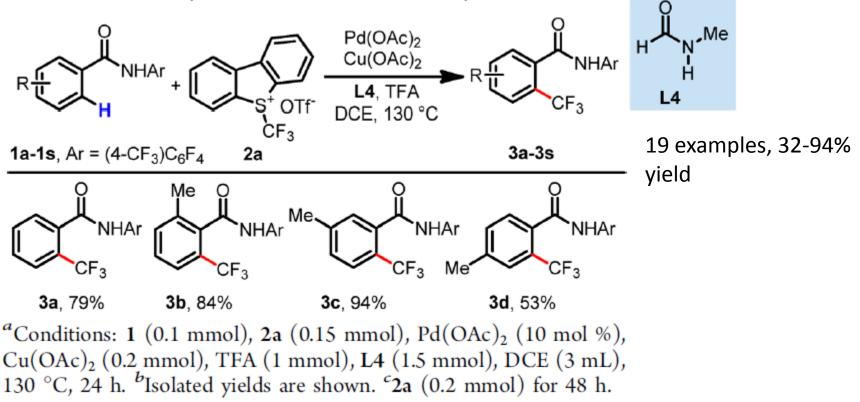
20 examples in total, 36-88% yield

Angew. Chem. Int. Ed. 2011, 50, 9081-9084 DOI: 10.1002/anie.201102985



^{*a*} Unless otherwise noted, the reaction conditions were as follows: substrate (0.2 mmol), Pd(OAc)₂ (0.02 mmol, 10 mol %), Cu(OAc)₂ (0.2 mmol, 1.0 equiv), **1b** (0.3 mmol, 1.5 equiv), TFA (2.0 mmol, 10 equiv), DCE (1 mL), 110 °C, 48 h. ^{*b*} Isolated yield. ^{*c*} Pd(OAc)₂ (15 mol %) was used. ^{*d*} Pd(OAc)₂ (20 mol %) was used.

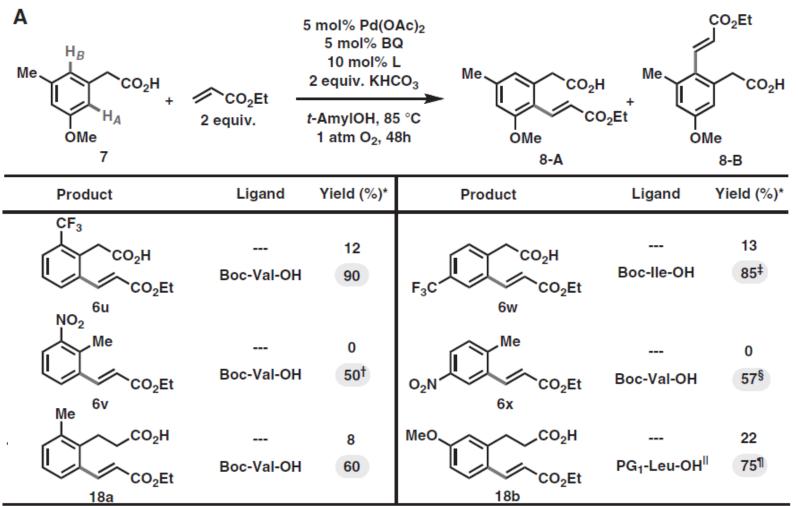
Table 3. C-H Trifluoromethylation Using Diverse Heterocyclic Directing Groups^{a,b}


J. AM. CHEM. SOC. 2010, 132, 3648-3649

10.1021/ja909522s

4-4. C-CF₃ Bond formation

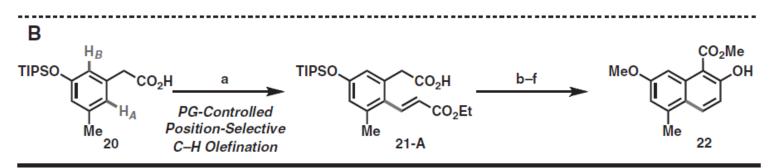
Table 2. Pd-Catalyzed Ortho Trifluoromethylation^{*a,b*}

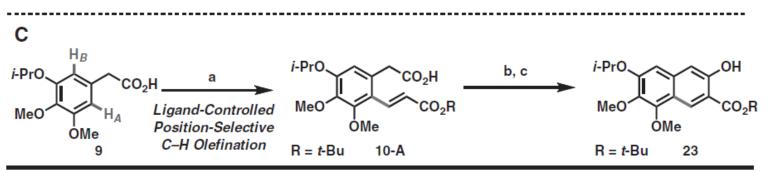


dx.doi.org/10.1021/ja305259n | J. Am. Chem. Soc. 2012, 134, 11948-11951

5. Other

- 5-1. Ligand development
- 3 publications, one science. Very important, related to many JACS publications.
- 5-2. Cyclization reaction: 5 publications.
- 5-3. C-B Bond and C-P Bond (not C-H) Formation
- 1 publication for each
- 5-3. Mechanism related: 6 publications.
- 2 computational, 2 kinetic, 1 Pd complex, 1 model study.
- 5-4. Application: 2 publications.
- 5-5. Other works: 3-4 publications.

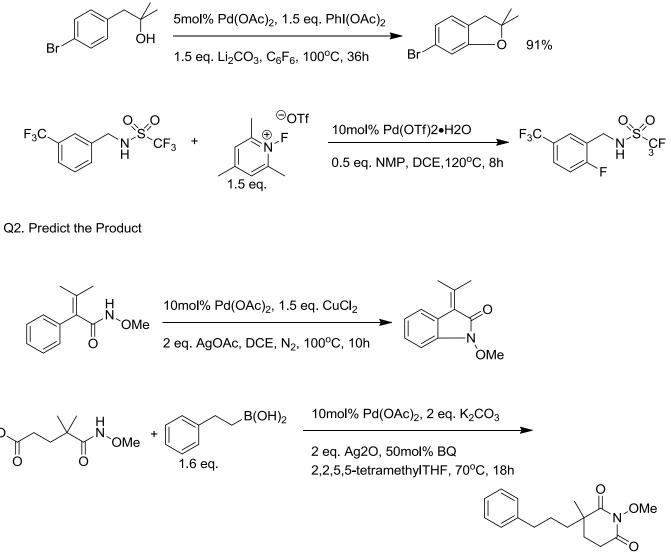

Science 327, 315 (2010); DOI: 10.1126/science.1182512


*Isolated Yield. [†]2-Nitrophenylacetic acid was used as substrate; the product was completely decarboxylated under the reaction conditions: 10 mol% Pd(OAc)₂, 10 mol% BQ, 20 mol% Boc-Val-OH. [‡]Mono:Di = 2:1. [§]4-Nitrophenylacetic acid was used as substrate; decarboxylated:non-decarboxylated = 2:1. ^{II}PG₁ = (-)-Menthyl(O₂C). [¶]Mono:Di = 3:1.

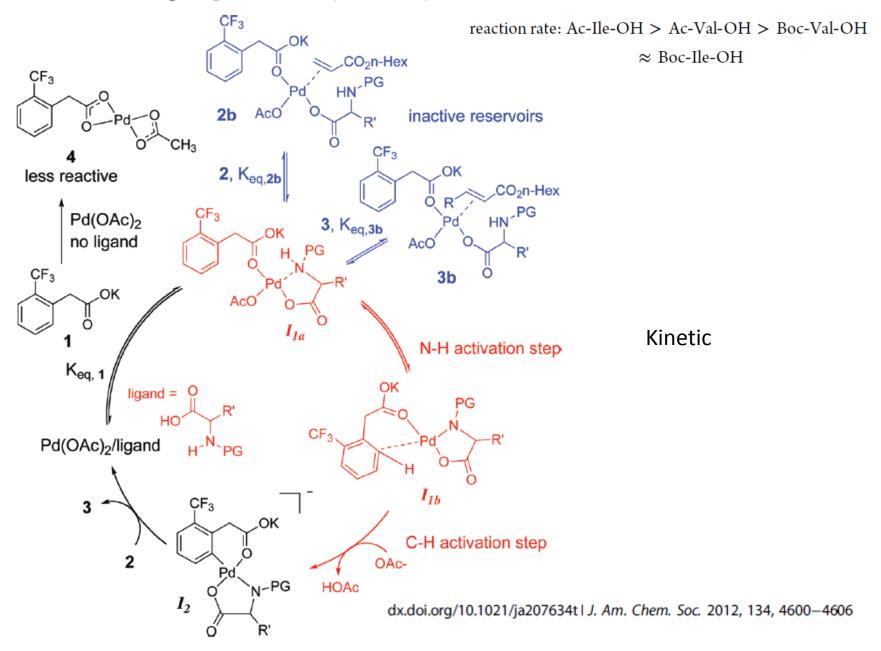
Science **327**, 315 (2010); DOI: 10.1126/science.1182512

5-1. Ligand

Reagents and conditions: (a) $Pd(OAc)_2$, BQ, ethyl acrylate, KHCO₃, *t*-AmylOH, O₂ (1 atm), 85 °C, 77%, A:B = 10:1. (b) H₂ (balloon), Pd/C, MeOH, rt. (c) Et₃N•3HF, THF, rt. (d) MeI, K₂CO₃, acetone, reflux, 69% (3 steps). (e) KO*t*-Bu, Et₂O, rt, 88%. (f) BrCCl₃, DBU, CH₂Cl₂, rt, 81%.



Reagents and conditions: (a) $Pd(OAc)_2$, BQ, *t*-butyl acrylate, KHCO₃, Boc-IIe-OH, *t*-AmyIOH, O₂ (1 atm), 85 °C, 86%, A:B = 23:1 (without ligand, A:B = 1.5:1). (b) (COCI)₂, CH₂CI₂, rt. (c) *i*-Pr₂NEt, CH₂CI₂, rt, 87% (two steps).


Fig. 4. (**A**) Synthesis of 7,8-dimethoxytetalin-2-one. (**B**) Synthesis of the naphthoic acid component of neocarzinostatin (**1**). (**C**) Synthesis of the naphthoic acid component of kedarcidin (**3**).

Thanks!

Q1. Predict the Product

Scheme 4. Proposed Reaction Mechanism Highlighting Dual Rate-Determining Steps and Off-Cycle Catalyst Reservoirs

